翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quaternionic symmetric space : ウィキペディア英語版
Quaternion-Kähler symmetric space
In differential geometry, a quaternion-Kähler symmetric space or Wolf space is a quaternion-Kähler manifold which, as a Riemannian manifold, is a Riemannian symmetric space. Any quaternion-Kähler symmetric space with positive Ricci curvature is compact and simply connected, and is a Riemannian product of quaternion-Kähler symmetric spaces associated to compact simple Lie groups.
For any compact simple Lie group ''G'', there is a unique ''G''/''H'' obtained as a quotient of ''G'' by a subgroup
: H = K \cdot \mathrm(1).\,
Here, Sp(1) is the compact form of the SL(2)-triple associated with the highest root of ''G'', and ''K'' its centralizer in ''G''. These are classified as follows.
(\mathrm(p) \times \mathrm(2))
| ''p''
| Grassmannian of complex ''2''-dimensional subspaces of \mathbb^
|-
| \mathrm(p+4)\,
| \mathrm(p) \cdot \mathrm(4)
| ''p''
| Grassmannian of oriented real ''4''-dimensional subspaces of \mathbb^
|-
| \mathrm(p+1)\,
| \mathrm(p) \cdot \mathrm(1)
| ''p''
| Grassmannian of quaternionic ''1''-dimensional subspaces of \mathbb^
|-
| E_6\,
| \mathrm(6)\cdot\mathrm(2)
| 10
| Space of symmetric subspaces of (\mathbb C\otimes\mathbb O)P^2 isometric to (\mathbb C\otimes \mathbb H)P^2
|-
| E_7\,
| \mathrm(12)\cdot\mathrm(1)
| 16
| Rosenfeld projective plane (\mathbb H\otimes\mathbb O)P^2 over \mathbb H\otimes\mathbb O
|-
| E_8\,
| E_7\cdot\mathrm(1)
| 28
| Space of symmetric subspaces of (\mathbb\otimes\mathbb O)P^2 isomorphic to (\mathbb\otimes\mathbb O)P^2
|-
| F_4\,
| \mathrm(3)\cdot\mathrm(1)
| 7
| Space of the symmetric subspaces of \mathbb^2 which are isomorphic to \mathbb^2
|-
| G_2\,
| \mathrm(4)\,
| 2
| Space of the subalgebras of the octonion algebra \mathbb which are isomorphic to the quaternion algebra \mathbb
|}
The twistor spaces of quaternion-Kähler symmetric spaces are the homogeneous holomorphic contact manifolds, classified by Boothby: they are the adjoint varieties of the complex semisimple Lie groups.
These spaces can be obtained by taking a projectivization of
a minimal nilpotent orbit of the respective complex Lie group.
The holomorphic contact structure is apparent, because
the nilpotent orbits of semisimple Lie groups
are equipped with the Kirillov-Kostant holomorphic symplectic form. This argument also explains how one
can associate a unique Wolf space to each of the simple
complex Lie groups.
==See also==

*Quaternionic discrete series representation

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quaternion-Kähler symmetric space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.